Note

Steric effect of a bulky 6-substituent in the I⁺-promoted glycosylation with pent-4-enyl and thioethyl glycosides

Stephan Houdier and Philippe J.A. Vottero

Département de Recherche Fondamentale sur la Matière Condensée, Service d'Etudes des Systèmes Moléculaires, Laboratoire des Macromolécules Végétales, Centre d'Etudes Nucléaires, 85X, F-38041 Grenoble (France)

(Received November 6th, 1991; accepted January 16th, 1992)

Soft electrophiles such as iodonium dicollidine perchlorate (IDCP) can activate pent-4-enyl glycosides for glycosylation ¹, but α - and β -glycosides were obtained in various proportions regardless of the nature of donors or acceptors (primary or secondary hydroxyl groups). It was claimed ^{1b} that the initial configuration of the glycosyl donor has no influence on the resulting glycosidic linkage.

We have investigated glycosylations of 1,2:5,6-di-O-isopropylidene- α -D-glycofuranose (4), 1,2:3,4-di-O-isopropylidene- α -D-galactopyranose (5), and methyl 2,3,4-tri-O-benzyl- α -D-glucopyranoside (6) variously with pent-4-enyl 2,3,4-tri-O-benzyl- β -D-glucopyranoside derivatives in which HO-6 was protected by a benzyl (1), a trityl (2), or a *tert*-butyldimethylsilyl group (3) in order to assess the effect of the bulk of the 6-substituent. Table I gives the reaction conditions and results which show that the presence of a bulky 6-substituent (α) increases significantly the proportion of the α product (entries 1, 3, and 4); (α) decreases the yield when a secondary hydroxyl group is glycosylated (entries 1, 3, and 4), but the effect is less or opposite when a primary hydroxyl group is involved (entries 2 and 5-7); (α) lowers the increase in yield of the α product when a primary hydroxyl group is glycosylated (entries 2, 5, 6, and 9); and (α) gives a much better yield of the α anomer when there is a higher proportion of ether in the solvent as already noted α (entries 6-8).

Veeneman and van Boom ³ reported on iodonium-promoted *cis*-glycosylation starting from thioethyl glycosides. Taking into account the above results, we have investigated such glycosylations with the 6-O-benzyl (7) and 6-O-trityl (8) derivatives of ethyl 2,3,4-tri-O-benzyl-1-thio- β -D-glucopyranoside. The results are shown in Table II which reveal the same directing effect as for the glycosylations in Table

Correspondence to: Professor P.J.A. Vottero, Département de Recherche Fondamentale sur la Matiére Condensée, Service d'Etudes des Systèmes Moléculaires, Laboratoire des Macromolécules Végétales, Centre d'Etudes Nucléaires, 85X, F-38041 Grenoble, France.

Entry	Donor	Acceptor group	Product ^a	Time (h)	Solvent b	Yield (%) ^c	$\alpha: \beta$ Ratio ^d
1 4		10α,β	1.00	A	84	3:1	
2	1	5	$11\alpha,\beta$	0.50	Α	80	1:1.4
3	2	4	$12\alpha,\beta$	2.50	Α	53	13:1
4	3	4	$13\alpha,\beta$	0.40	Α	56	7:1
5	3	5	$14\alpha,\beta$	1.00	Α	92	1.4:1
6	2	5	$15\alpha,\beta$	1.25	Α	91	1.9:1
7	2	5	$15\alpha,\beta$	5.00	В	70	7:1
8	2	5	15α	12.0	C	52	1:0
9	2	6	$16\alpha,\beta$	1.00	Α	53	2.5:1

TABLE I
IDCP-promoted glycosylations of pent-4-enyl glycosides

^a All reactions were carried out at room temperature under nitrogen, in the presence of 4A molecular sieves: donor-acceptor-IDCP = 1:1:5:2. ^b A, CH₂ClCH₂Cl; B, 1:1.5 CH₂ClCH₂Cl-Et₂O; C, 1:5 CH₂ClCH₂Cl-Et₂O. ^c Products isolated by column chromatography or HPLC on SiO₂. ^d Determined by ^IH-NMR spectroscopy.

I. Glycosylation of the secondary OH group in 4 was stereospecific (entry 3) even in 1,2-dichloroethane which is known to disfavour *cis*-glycosylation as compared to ether.

Thus, the presence of a bulky 6-substituent affects the steric course of the glycosylation reaction and increases the proportion of α -glycosides even if there is some loss of yield. Since the phenomenon was observed with both pent-4-enyl and thioethyl glycosides, steric hindrance may affect the course of the reaction, possibly because of shielding of the β face of the anomeric carbocationic transition-state.

$$R^{2}O - XR^{1}$$

$$BnO OBn$$

$$R = R - OH$$

$$R = R - OH$$

$$R^{2}O - OBn$$

$$R^{2}O - O$$

BnC

TABLE II	
IDCP-promoted glycosylations of thioethyl glycoside	ès

Entry	Donor	Acceptor group	Product ^a	Time (h)	Solvent b	Yield (%) ^c	$\alpha: \beta$ Ratio ^d
1	7 6		17α,β	2.30	В	68%	5.3:1
2	8	6	$16\alpha,\beta$	12.0	В	48%	7.35:1
3	8	4	12α	10.0	Α	65%	1:0

^a All reactions were carried out at room temperature under nitrogen, in the presence of 4A molecular sieves: donor-acceptor-IDCP = 1:0.9:2, 1:0.9:4, 1:0.9:10; added in small portions until no further reaction occurred. ^b A, CH₂ClCH₂Cl; B, 1:5 CH₂ClCH₂Cl-Et₂O. ^c Products isolated by column chromatography or HPLC on SiO₂. ^d Determined by ¹H-NMR spectroscopy.

EXPERIMENTAL

General methods.—All solvents were dried. The glycosylation reactions were conducted under N_2 , and monitored by TLC on Silica Gel 60 (Riedel-de-Haën, 37332), using 7:3 hexane–EtOAc and detection by charring with H_2SO_4 . Flash column chromatography was performed on Silica Gel 60 (Merck, 70–230 mesh). HPLC was performed on a Merck apparatus with refractive index detection, a home-packed column of SiO_2 (10 μ m), and elution with 9:1 hexane–EtOAc at 3 mL/min. The ¹H- and ¹³C-NMR spectra were recorded for solutions in CDCl₃ or (CD₃)₂CO (internal Me₄Si) with a Bruker AC200 or AM400 spectrometer.

Compounds 1-8 were prepared by standard methods (benzylation ⁴, silylation ⁵, thioglycosidation ^{3b}). The pent-4-enyl β -glycosides were obtained by Koenigs-Knorr synthesis with the glycosyl bromides in the presence of silver carbonate.

Glycosylation reactions.—To a solution of donor (0.10 mmol) and acceptor (0.15 mmol) in 1,2-dichloroethane (1 mL) were added freshly powdered 4A molecular

TABLE III NMR data ^a for 10α to 17β (δ in ppm, J in Hz)

	10α	10β	11α	11β	12α	12β	13α	13β
H-1	5.88	6.00	5.44	5.49	5.88	5.82	5.88	5.75
$J_{1,2}$	3.50	3.67	5.01	4.94	3.51	3.82	3.56	3.83
H-1'	5.25	4.45	4.93	4.44	5.36	4.53	5.21	4.45
$J_{1',2'}$	3.53	7.76	3.85	7.50	3.46	7.76	3.51	7.82
C-1	105.13	105.23	96.22	96.31	104.34 *	104.07 *	104.30 *	104.10 *
C-1'	97.96	101.45	96.97	104.28	97.03 *	99.71 *	97.12 *	99.92 *
	14α	14β	15α	15β	16α	16β	17α	17β
H-1	5.52	5.57	5.51	5.59	4.55	4.68	4.54	4.60
$J_{1,2}$	5.03	5.00	4.98	5.01	3.49	3.40	3.54	3.21
H-1'	5.00	4.44	5.12	4.51	5.08	4.35	4.96	4.34
$J_{1',2'}$	3.45	7.75	3.67	7.22	3.53	7.35	3.49	7.72
C-1	95.43 *	95.49 *	96.26	96.35	97.83	98.18	97.81	97.94
C-1'	95.67 *	102.92 *	96.26	104.19	96.93	103.74	97.12	103.69

^a Obtained for solutions in CDCl₃ or (CD₃)₂CO *.

sieves, and the mixture was stirred under N_2 for 30 min. Iodonium dicollidine perchlorate (IDCP, 0.2 mmol) was then added, and the reaction was monitored by TLC. At completion, the solution was diluted with CH_2Cl_2 , filtered, and washed successively with aq sodium thiosulfate and water, dried, and concentrated. Column chromatography or HPLC of the residue afforded an α,β -mixture of the disaccharide derivatives.

The FAB-mass spectra of the disaccharides derivatives 11-17 each contained pseudomolecular ions $(M + Cs)^+$ at m/z $(M + 132.9)^+$ and some for $(M - H)^+$. PhCH₂⁺ (m/z 90.8) was the base peak except for tritylated products for which it was Tr⁺ (m/z 243.1): 11 $(M + Cs)^+$ 915.4 (8%), 12 $(M + Cs)^+$ 1067.6 (9%), 13 $(M + Cs)^+$ 939 (13%), $(M - H)^+$ 805.1 (2%), 14 $(M + Cs)^+$ 939 (10%), $(M - H)^+$ 805.1 (1%), 15 $(M + Cs)^+$ 1067.6 (8%), 16 $(M + Cs)^+$ 1270.9 (2.1%), 17 $(M + Cs)^+$ 1118.9 (1.6%). The NMR data are given in Table III.

REFERENCES

- (a) B. Fraser-Reid, P. Konradsson, D.R. Mootoo, and U. Udodong, J. Chem. Soc., Chem. Commun., (1988) 823-825; (b) D.R. Mootoo, V. Date, and B. Fraser-Reid, ibid., (1988) 1462-1464; (c) D.R. Mootoo and B. Fraser-Reid, J. Am. Chem. Soc., 110 (1988) 2662-2663; (d) D.R. Mootoo, P. Konradsson, U. Udodong, and B. Fraser-Reid, ibid., 110 (1988) 5582-5584; (e) D.R. Mootoo and B. Fraser-Reid, Tetrahedron Lett., 30 (1989) 2363-2366; (f) D.R. Mootoo, P. Konradsson, and B. Fraser-Reid, J. Am. Chem. Soc., 111 (1989) 8540-8542; (g) P. Konradsson, U. Udodong, and B. Fraser-Reid, Tetrahedron Lett., 31 (1990) 4313-4316; (h) P. Konradsson, D.R. Mootoo, R.E. McDevitt, and B. Fraser-Reid, J. Chem. Soc. Chem. Commun., (1990) 270-272; (i) J.M. Llera, J.C. Lopez, and B. Fraser-Reid, J. Org. Chem., 55 (1990) 2997-2998; (j) B. Fraser-Reid, Z. Wu, U. Udodong, and H. Ottosson, ibid., 55 (1990) 6068-6070; (k) A.J. Ratcliffe, P. Konradsson, and B. Fraser-Reid, J. Am. Chem. Soc., 112 (1990) 5665-5667.
- 2 H.P. Wessel, Tetrahedron Lett., 31 (1990) 6863-6866.
- 3 (a) G.H. Veeneman and J.H. van Boom, Tetrahedron Lett., 31 (1990) 275-278; (b) G.H. Veeneman, S.H. van Leeuwen, and J.H. van Boom, ibid., 31 (1990) 1331-1334.
- 4 M. Bessodes, J. Shamsazar, and K. Antonakis, Synthesis, (1988) 560-562.
- 5 E.J. Corey and A. Venkateswarlu, J. Am. Chem. Soc., 94 (1972) 7190-7191.